skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNab, Fergus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantifying the depths and temperatures from which igneous rocks are derived is an important step in understanding volcanic, magmatic and mantle processes. We present meltPT, a Python package that allows users to apply twelve published whole-rock thermobarometers within a consistent framework, as well as combine thermobarometric results and geothermal models to estimate mantle potential temperatures. We apply meltPT to basaltic rocks from mid-ocean ridges and the Hawaiian Islands. We find mid-ocean ridge basalts equilibrate between 1–2 GPa and 1275–1475 ℃, corresponding to an ambient mantle potential temperature of ~1400 ℃. We estimate that the Hawaiian plume has an excess temperature of ~150 ℃. Hawaiian melt-equilibration depths increase from 1–3 GPa to 2.5–5 GPa through each island's life cycle. Our results indicate that multiple lithologies are present within the plume, and that transient plume reconfiguration in response to changing plate velocity is a viable mechanism for generating Hawaiʻi's two geochemically distinct plume tracks. 
    more » « less